The mutual inductance of a pair of coils, each of $N\,turns$, is $M\,henry$. If a current of $I\, ampere$ in one of the coils is brought to zero in $t$ $second$ , the $emf$ induced per turn in the other coil, in volt, will be
$\frac {MI}{t}$
$\frac {NMI}{t}$
$\frac {MN}{It}$
$\frac {MI}{Nt}$
Two coils $P$ and $Q$ are separated by some distance. When a current of $3\, A$ flows through coil $P$ a magnetic flux of $10^{-3}\, Wb$ passes through $Q$. No current is passed through $Q$. When no current passes through $P$ and a current of $2\, A$ passes through $Q$, the flux through $P$ is
Give two definitions of mutual inductance, give its units and write factors on which its value depends.
Two coils of self inductance ${L_1}$ and ${L_2}$ are placed closer to each other so that total flux in one coil is completely linked with other. If $M$ is mutual inductance between them, then $M$ is
A small square loop of wire of side $l$ is placed inside a large circular loops of radius $r$. The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to
If a change in current of $0.01\, A$ in one coil produces a change in magnetic flux of $1.2 \times {10^{ - 2}}\,Wb$ in the other coil, then the mutual inductance of the two coils in henries is.....$H$