The magnetic moment of a current $(i)$ carrying circular coil of radius $(r)$ and number of turns $(n)$ varies as
$1/ r^2$
$1/ r$
$r$
$r^2$
Two very long, straight and insulated wires are kept at $90^o$ angle from each other In $xy -$ plane as shown in the figure. These wires carry current of equal magnitude $I$, whose directions are shown in the figure. The net magnetic field at point $P$ will be
For the magnetic field to be maximum due to a small element of current carrying conductor at a point, the angle between the element and the line joining the element to the given point must be.......$^o$
Two parallel long current carrying wire separated by a distance $2 \mathrm{r}$ are shown in the figure. The ratio of magnetic field at $\mathrm{A}$ to the magnetic field produced at $C$ is $\frac{x}{7}$. The value of $x$ is $\qquad$
A parallel plate capacitor of area $60\, cm^2$ and separation $3\, mm$ is charged initially to $90\, \mu C$. If the medium between the plate gets slightly conducting and the plate loses the charge initially at the rate of $2.5\times10^{-8}\, C/s$, then what is the magnetic field between the plates ?
A current of $0.1\, A$ circulates around a coil of $100$ $turns$ and having a radius equal to $5\, cm$. The magnetic field set up at the centre of the coil is $({\mu _0} = 4\pi \times {10^{ - 7}}\,weber/ampere - metre)$