The magnetic field due to a current carrying circular loop of radius $3\, cm$ at a point on the axis at a distance of $4\, cm$ from the centre is $54\, \mu T$. What will be its value at the centre of the loop.......$\mu T$
$250$
$150$
$125$
$75$
Give differences between Biot-Savart law and Coulomb’s law.
Two concentric circular loops, one of radius $R$ and the other of radius $2 R$, lie in the $x y$-plane with the origin as their common center, as shown in the figure. The smaller loop carries current $I_1$ in the anti-clockwise direction and the larger loop carries current $I_2$ in the clockwise direction, with $I_2>2 I_1 . \vec{B}(x, y)$ denotes the magnetic field at a point $(x, y)$ in the $x y$-plane. Which of the following statement($s$) is(are) current?
$(A)$ $\vec{B}(x, y)$ is perpendicular to the $x y$-plane at any point in the plane
$(B)$ $|\vec{B}(x, y)|$ depends on $x$ and $y$ only through the radial distance $r=\sqrt{x^2+y^2}$
$(C)$ $|\vec{B}(x, y)|$ is non-zero at all points for $r$
$(D)$ $\vec{B}(x, y)$ points normally outward from the $x y$-plane for all the points between the two loops
The unit vectors $\hat i,\;\hat j\;{\rm{and }}\,\hat k$ are as shown below. What will be the magnetic field at $O$ in the following figure
Three rings, each having equal radius $R,$ are placed mutually perpendicular to each other and each having its centre at the origin of co-ordinate system. If current $I$ is flowing thriugh each ring then the magnitude of the magnetic field at the common centre is
Two circular coils $P$ and $Q$of $100$ turns each have same radius of $\pi \mathrm{cm}$. The currents in $\mathrm{P}$ and $\mathrm{R}$ are $1 \mathrm{~A}$ and $2 \mathrm{~A}$ respectively. $\mathrm{P}$ and $\mathrm{Q}$ are placed with their planes mutually perpendicular with their centers coincide. The resultant magnetic field induction at the center of the coils is $\sqrt{\mathrm{x}} \mathrm{mT}$, where X=___.
$\left[\text { Use } \mu_0=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}\right]$