The magnetic field at the centre of current carrying coil is
$\frac{{{\mu _0}ni}}{{2r}}$
$\frac{{{\mu _0}}}{{2\pi }}\frac{{ni}}{r}$
$\frac{{{\mu _0}ni}}{{4r}}$
${\mu _0}ni$
The radius of a circular current carrying coil is $R$. At what distance from the centre of the coil on its axis, the intensity of magnetic field will be $\frac{1}{2 \sqrt{2}}$ times that at the centre?
Write equation of magnetic field due to a circular current carrying loop at a point on the axis of the loop. Give its special cases.
The magnetic induction at a point $P$ which is distant $4\, cm$ from a long current carrying wire is ${10^{ - 8}}\,Tesla$. The field of induction at a distance $12\, cm $ from the same current would be
A circular loop of radius $r$ is carrying current I A. The ratio of magnetic field at the centre of circular loop and at a distance $r$ from the center of the loop on its axis is:
The magnetic field at the origin due to a current element $i\,\overrightarrow {dl} $ placed at position $\vec r$ is
$(i)\,\,\left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{d\vec l\, \times \,\vec r}}{{{r^3}}}} \right)$
$(ii)\,\, - \left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{d\vec l\, \times \,\vec r}}{{{r^3}}}} \right)$
$(iii)\,\left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{\,\vec r \times d\vec l}}{{{r^3}}}} \right)$
$(iv)\, - \left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{\,\vec r \times d\vec l}}{{{r^3}}}} \right)$