તાર્કિક વિધાન $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ =
$\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$
$( \sim \,p\,\, \wedge \sim \,q)\, \wedge \,r$
$ \sim \,p\,\, \vee {\kern 1pt} \,r$
$\left( {p\, \wedge \sim q} \right) \wedge \,r\,$
કોઈ પણ બે વિધાનો $p$અને $q$ માટે સમીકરણ $p \vee ( \sim p\, \wedge \,q)$ નું નિષેધ ........... થાય
નીચેના વિધાનો ધ્યાનમાં લો. :
$P$ : સુમન હોશિયાર છે
$Q$ : સુમન અમીર છે
$R$ : સુમન પ્રમાણિક છે
"સુમન હોશિયાર અને અપ્રમાણિક હોય તો અને તો જ તે અમીર હોય" આ વિધાનના નિષેધને નીચેનામાંથી ............. રીતે રજૂ કરી શકાય.
વિધાન $(p \wedge(\sim q)) \Rightarrow(p \Rightarrow(\sim q))$ એ
વિધાન $(p \vee q) \wedge(q \vee(\sim r))$ નો નિષેધ $...........$ છે.
વિધાન $((A \wedge(B \vee C)) \Rightarrow(A \vee B)) \Rightarrow A$ નું નિષેધ $.........$ છે.