The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to
$\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$
$( \sim \,p\,\, \wedge \sim \,q)\, \wedge \,r$
$ \sim \,p\,\, \vee {\kern 1pt} \,r$
$\left( {p\, \wedge \sim q} \right) \wedge \,r\,$
Which of the following is a tautology?
The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
Which of the following statement is a tautology?