रैखिक समीकरण निकाय $2 x +3 y +2 z =9$ ; $3 x +2 y +2 z =9$ ; $x - y +4 z =8$
का एक हल $(\alpha, \beta, \gamma)$ है जो $\alpha+\beta^{2}+\gamma^{3}=12$ को संतुष्ट करता है
के अनन्त हल है।
का कोई हल नहीं है
का केवल एक हल है
माना $\lambda$ एक ऐसी वास्तविक संख्या है जिसके लिए रैखिक समीकरण निकाय $x + y + z =6$; $4 x +\lambda y -\lambda z =\lambda-2$; $3 x +2 y -4 z =-5$ के अनन्त हल हैं। तो $\lambda$ जिस द्विघात समीकरण का एक मूल है, वह है
$\lambda$ के वास्तविक मानों, जिनके लिए रैखिक समीकरण निकाय
$2 x -3 y +5 z =9$
$x +3 y - z =-18$
$3 x - y +\left(\lambda^2-|\lambda|\right) z =16$
का कोई हल नहीं है, की संख्या है :-
यदि $A =\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right],$ तो दिखाइए $|2 A |=4 \mid A$
माना $d \in R$ तथा $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta \in \left[ {0,2\pi } \right]$ है, तो $d$ का एक मान है
$\lambda$ के सभी मानों का समुच्चय, जिनके लिए रैखिक समीकरण निकाय $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,$$\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ का एक अतुच्छ हल है,