The following system of linear equations  $7 x+6 y-2 z=0$ ; $3 x+4 y+2 z=0$ ; ${x}-2{y}-6{z}=0,$ has

  • [JEE MAIN 2020]
  • A

    infinitely many solutions, $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying $x=2 z$

  • B

    no solution

  • C

    only the trivial solution

  • D

    infinitely many solutions, $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying $y=2 z$

Similar Questions

If the system of equations

$x-2 y+3 z=9$

$2 x+y+z=b$

$x-7 y+a z=24$

has infinitely many solutions, then $a - b$ is equal to

  • [JEE MAIN 2020]

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

If the system of linear equations $x + 2ay + az = 0$ $x + 3by + bz = 0$ $x + 4cy + cz = 0$ has a non-zero solution, then $a, b, c$

If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :

  • [JEE MAIN 2021]

For all values of $A,B,C$ and $P,Q,R$, the value of $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ is

  • [IIT 1994]