The following system of linear equations $7 x+6 y-2 z=0$ ; $3 x+4 y+2 z=0$ ; ${x}-2{y}-6{z}=0,$ has
infinitely many solutions, $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying $x=2 z$
no solution
only the trivial solution
infinitely many solutions, $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying $y=2 z$
If the system of equations
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$
has infinitely many solutions, then $a - b$ is equal to
If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
{{q_1}}&{{q_2}}&{{q_3}} \\
{{q_2}}&{{q_3}}&{{q_1}} \\
{{q_3}}&{{q_1}}&{{q_2}}
\end{array}} \right|$ is
If the system of linear equations $x + 2ay + az = 0$ $x + 3by + bz = 0$ $x + 4cy + cz = 0$ has a non-zero solution, then $a, b, c$
If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :
For all values of $A,B,C$ and $P,Q,R$, the value of $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ is