The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on

  • A

    Both $\alpha $ and $\beta $

  • B

    Neither $\beta $ nor $\alpha $

  • C

    $\beta $ only

  • D

    $\alpha $ only

Similar Questions

$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$where $a = i,b = \omega ,c = {\omega ^2}$, then $\Delta $is equal to

If $\left| \begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c}\\
{b + a}&{ - 2b}&{b + c}\\
{c + a}&{b + c}&{ - 2c}
\end{array}\right|$ $ = \alpha \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \ne 0$ then $\alpha $ is equal to

  • [AIEEE 2012]

If $[x]$ denotes the greatest integer  $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$

$[cot \,\theta ] x + y = 0$

  • [JEE MAIN 2019]

Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to

  • [JEE MAIN 2023]

Which of the following is correct?