The equation of straight line passing through $( - a,\;0)$ and making the triangle with axes of area ‘$T$’ is
$2Tx + {a^2}y + 2aT = 0$
$2Tx - {a^2}y + 2aT = 0$
$2Tx - {a^2}y - 2aT = 0$
None of these
The sides of a rhombus $ABCD$ are parallel to the lines, $x - y + 2\, = 0$ and $7x - y + 3\, = 0$. If the diagonals of the rhombus intersect at $P( 1, 2)$ and the vertex $A$ ( different from the origin) is on the $y$ axis, then the ordinate of $A$ is
Let $A (-3, 2)$ and $B (-2, 1)$ be the vertices of a triangle $ABC$. If the centroid of this triangle lies on the line $3x + 4y + 2 = 0$, then the vertex $C$ lies on the line
The circumcentre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1 , a^2 + 1 )$ and $(2a, - 2a)$, $a \ne 0$. Then for any $a$ , the orthocentre of this triangle lies on the line
If the coordinates of the points $A,\, B,\, C$ be $(-1, 5),\, (0, 0)$ and $(2, 2)$ respectively and $D$ be the middle point of $BC$, then the equation of the perpendicular drawn from $B$ to the line $AD$ is
A triangle is formed by $X -$ axis, $Y$ - axis and the line $3 x+4 y=60$. Then the number of points $P ( a, b)$ which lie strictly inside the triangle, where $a$ is an integer and $b$ is a multiple of $a$, is $...........$