The end $B$ of the rod $AB$ which makes angle $\theta$ with the floor is being pulled with, a constant velocity $v_0$ as shown. The length of the rod is $l.$ At the instant when $\theta = 37^o $ then
velocity of end $A$ is $\frac{5}{3}$ $v_0$ downwards
angular velocity of rod is $\frac{5}{3} \frac{v_0}{l}$
angular velocity of rod is constant
velocity of end $A$ is constant
For the given diagram when block $B$ is pulled with velocity $V$ then velocity of block $A$ will be :-
In the arrangement shown in fig. the ends $P$ and $Q$ of an unstretchable string move downwards with uniform speed $U$. Pulleys $A$ and $B$ are fixed. Mass $M$ moves upwards with a speed.
Two equal masses $A$ and $B$ are arranged as shown in the figure. Pulley and string are ideal and there is no friction. Block $A$ has a speed $u$ in the downward direction. The speed of the block $B$ is :-
A ladder rests against a frictionless vertical wall, with its upper end $6\,m$ above the ground and the lower end $4\,m$ away from the wall. The weight of the ladder is $500 \,N$ and its C. G. at $1/3^{rd}$ distance from the lower end. Wall's reaction will be, (in Newton)