समान रेखीय आवेश घनत्व $\lambda$ वाली त्रिज्या $R_1$ तथा $R _2$ की दो सम केन्द्रीय अर्द्ध वलयो के केन्द्र पर विद्युत विभव होगा :-
$\frac{2 \lambda}{\epsilon_0}$
$\frac{\lambda}{2 \epsilon_0}$
$\frac{\lambda}{4 \epsilon_0}$
$\frac{\lambda}{\epsilon_0}$
एक पतले गोलीय चालक कोश की त्रिज्या $R$ तथा इस पर आवेश $q$ है। अन्य आवेश $Q$ को कोश के केन्द्र पर रख दिया गया है। गोलीय कोश के केन्द्र से $\frac{R}{2}$ दूरी पर बिन्दु $P$ पर विद्युत विभव होगा
एक बिन्दु आवेश के कारण किसी बिन्दु पर विभव का मान होगा
एक आवेश $+q$ को $r$ त्रिज्या वोल एक पतले वलय जिसका रेखीय आवेश घनत्व $\lambda=q \sin ^2 \theta /(\pi r)$ है, पर वितरित किया जाता है। वलय $x-y$ तल में है और $x$-अक्ष से $\vec{r}$ एक कोण $\theta$ बनाता है। बिन्दु आवेश $+Q$ को वलय के केन्द्र से अनंत तक विस्थापित करने में वैद्युत बल द्वारा किया गया कार्य निम्न के बरावर है।
एक ठोस चालक गोले का आवेश $Q$ है, इसके चारों और अनावेशित संकेन्द्रीय गोलीय कोश है। ठोस गोले की सतह और खोखले गोलीय कोश की बाह्य सतह के बीच विभवान्तर $V$ है। यदि अब कोश पर आवेश $-3Q$ है, तो दो समान सतहों के बीच विभवान्तर.......$V$ है
चार आवेश $ + Q,\, - Q,\, + Q,\, - Q$ एक वर्ग के चारों कोनों पर क्रम में रखे हैं। वर्ग के केन्द्र पर