The distance $s$ travelled by a particle in time $t$ is $s=u t-\frac{1}{2} \,g t^{2}$. The initial velocity of the particle was measured to be $u=1.11 \pm 0.01 \,m / s$ and the time interval of the experiment was $t=1.01 \pm 0.1 \,s$. The acceleration was taken to be $g=9.8 \pm 0.1 \,m / s ^{2}$. With these measurements, the student estimates the total distance travelled. How should the student report the result?
$1121 \pm 0.1 \,m$
$11 \pm 0.1 \,m$
$112 \pm 0.07 \,m$
$11 \pm 0.07 \,m$
In an experiment, mass of an object is measured by applying a known force on it, and then measuring its acceleration. If in the experiment, the measured values of applied force and the measured acceleration are $F=10.0 \pm 0.2 \,N$ and $a=1.00 \pm 0.01 \,m / s ^2$, respectively. Then, the mass of the object is ............... $kg$
What is least count ? What is called least count error ?
The acceleration due to gravity is measured on the surface of earth by using a simple pendulum. If $\alpha$ and $\beta$ are relative errors in the measurement of length and time period respectively, then percentage error in the measurement of acceleration due to gravity is ................
What is the fractional error in $g$ calculated from $T = 2\pi \sqrt {l/g} $ ? Given fraction errors in $T$ and $l$ are $ \pm x$ and $ \pm y$ respectively?
In an experiment of simple pendulum time period measured was $50\,sec$ for $25$ vibrations when the length of the simple pendulum was taken $100\,cm$ . If the least count of stop watch is $0.1\,sec$ . and that of meter scale is $0.1\,cm$ then maximum possible error in value of $g$ is .......... $\%$