The degree of ionization of a $0.1 \,M$ bromoacetic acid solution is $0.132$ Calculate the $pH$ of the solution and the $p K_{ a }$ of bromoacetic acid.
Degree of ionization, $a=0.132$
Concentration, $c=0.1\, M$
Thus, the concentration of $H _{3} O ^{+}= c$. $a$
$=0.1 \times 0.132$
$=0.0132$
$pH =-\log \left[ H ^{+}\right]$
$=-\log (0.0132)$
$=1.879: 1.88$
Now,
$K_{a}=C \alpha^{2}$
$=0.1 \times(0.132)^{2}$
$K_{a}=.0017$
$p K_{a}=2.75$
Ionisation constant of $CH_3COOH$ is $1.7 \times 10^{-5}$ and concentration of $H^+$ ions is $3.4 \times 10^{-4}$. Then find out initial concentration of $CH_3COOH$ Molecules
Calculate the $pH$ of $0.08\, M$ solution of hypochlorous acid, $HOCl$. The ionization constant of the acid is $2.5 \times 10^{-5}$ Determine the percent dissociation of $HOCl.$
Sulphurous acid $\left( H _{2} SO _{3}\right)$ has $Ka _{1}=1.7 \times 10^{-2}$ and $Ka _{2}=6.4 \times 10^{-8} .$ The $pH$ of $0.588 \,M\, H _{2} SO _{3}$ is ..... . (Round off to the Nearest Integer)
$K_b$ for $NH_4OH$ is $1.8\times 10^{-5}.$ The $[\mathop O\limits^\Theta H]$ of $0.1\,M\,NH_4OH$ is
$5.0$ $pH$ containing solution is dilute $100$ times. Calculate $pH$ of dilute solution.