The data for the reaction $A + B \to C$ isThe rate law corresponds to the above data is
Exp. |
$[A]_0$ |
$[B]_0$ |
Initial rate |
$(1)$ |
$0.012$ |
$0.035$ |
$0.10$ |
$(2)$ |
$0.024$ |
$0.070$ |
$0.80$ |
$(3)$ |
$0.024$ |
$0.035$ |
$0.10$ |
$(4)$ |
$0.012$ |
$0.070$ |
$0.80$ |
Rate $ = k\,{[B]^3}$
Rate $ = k\,{[B]^4}$
Rate $ = k\,[A]\,{[B]^3}$
Rate $ = \,k\,{[A]^2}\,{[B]^2}$
For the first order decompsition reaction of $N_2O_5$, it is found that -
$(a)$ $2N_2O_5\rightarrow\,\,4NO_2(g)+O_2(g)-\frac{d[N_2O_5]}{dt}=k[N_2O_5]$
$(a)$ $N_2O_5\rightarrow\,\,2NO_2(g)+1/2\,\,O_2(g)-\frac{d[N_2O_5]}{dt}=k'[N_2O_5]$
which of the following is true ?
The reaction $2{H_2}{O_2} \to 2{H_2}O + {O_2}$ is a
The rate law for the reaction$RCl + NaOH(aq) \to ROH + NaCl$ is given by Rate $ = {K_1}[RCl]$. The rate of the reaction will be
Certain bimolecular reactions which follow the first order kinetics are called
The order of a reaction with rate equals $kC_A^{3/2}\,C_B^{ - 1/2}$ is