The order of a reaction with rate equals $kC_A^{3/2}\,C_B^{ - 1/2}$ is

  • A

    $2$

  • B

    $1$

  • C

    $ - \frac{1}{2}$

  • D

    $\frac{3}{2}$

Similar Questions

The rate of dissappearance of $MnO_4^-$ in the following reaction is $4.56 \times 10^{-3}\, M/s$

$2MnO_4^-+ 10I^-+ 16H^+ \to 2Mn^{2+} + 5I_2 + 8 H_2O$

The rate of apperance of $I_2$ is

Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$

Which is True $(T)$ and False $(F)$ in the following sentence ?

The order of this reaction is $2$.

The rate constant for a second order reaction is $8 \times {10^{ - 5}}\,{M^{ - 1}}\,mi{n^{ - 1}}$. How long will it take a $ 1\,M $ solution to be reduced to $0.5\, M$

For a reaction $X + Y \to Z$, rate $ \propto \, [X]$. What is $(i)$ molecularity and $(ii)$ order of reaction ?

The rate constant for the reaction $2N_2O_5 \to  4NO_2 + O_2$ is $3.0\times10^{-5}\, sec^{-1}$. If rate is $2.40\times10^{-5}\, M\, sec^{-1}$, then the concentration of $N_2O_5$ (in $M$) is ?