The correct order of energies of molecular orbitals of $N _2$ molecule, is
$\sigma 1 s < \sigma^* 1 s < \sigma 2 s < \sigma^* 2 s < \left(\pi 2 p_{ x }=\pi 2 p_{ y }\right) < \left(\pi^* 2 p_{ x }=\pi^* 2 p_{ y }\right) < \sigma 2 p_{ z } < \sigma^* 2 p_{ z }$
$\sigma 1 s < \sigma^* 1 s < \sigma 2 s < \sigma^* 2 s < \left(\pi 2 p_{ x }=\pi 2 p_{ y }\right) < \sigma 2 p_{ z } < \left(\pi^* 2 p_{ x }=\pi^* 2 p_{ y }\right) < \sigma^* 2 p_{ z }$
$\sigma 1 s < \sigma^* 1 s < \sigma 2 s < \sigma^* 2 s < \sigma 2 p_{ z } < \left(\pi 2 p_{ x }=\pi 2 p_{ y }\right) < \left(\pi^* 2 p_{ x }=\pi^* 2 p_{ y }\right) < \sigma^* 2 p_{ z }$
$\sigma 1 s < \sigma^* 1 s < \sigma 2 s < \sigma^* 2 s < \sigma 2 p_{ z } < \sigma^* 2 p_{ z } < \left(\pi 2 p_{ x }=\pi 2 p_{ y }\right) < \left(\pi^* 2 p_{ x }=\pi^* 2 p_{ y }\right)$
Maximum unpaired electrons are present in
The correct electron affinity order is $(EA = -\Delta H_{EG})$
Which one does not exhibit paramagnetism
Thermal decomposition of $AgNO _3$ produces two paramagnetic gases. The total number of electrons present in the antibonding molecular orbitals of the gas that has the higher number of unpaired electrons is. . . . .
When two atomic orbitals combine they form