The contrapositive of the statement "If it is raining, then I will not come", is
If I will not come, then it is raining.
If I will not come, then it is not raining.
If I will come, then it is raining.
If I will come, then it is not raining.
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
The statement $\sim(p\leftrightarrow \sim q)$ is :
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction