The coefficient of linear expansion depends on

- A
The original length of the rod

- B
The specific heat of the material of rod

- C
The change in temperature of the rod

- D
The nature of the metal

If a bimetallic strip is heated, it will

Ratio among linear expansion coefficient ($\alpha$), areal expansion coefficient ($\beta$) and volume expansion coefficient ($\gamma$) is

A glass flask of volume one litre at $0^oC$ is filled, level full of mercury at this temperature. The flask and mercury are now heated to $100°C$ ........... $cc$ mercury will spill out, if coefficient of volume expansion of mercury is $1.82 \times {10^{ - 4}}°C^{-1}$ and linear expansion of glass is $0.1 \times {10^{ - 4}}°C^{-1}$ respectively

A steel rod of diameter $1\,cm$ is clamped firmly at each end when its temperature is $25\,^oC$ so that it cannot contract on cooling. The tension in the rod at $0\,^oC$ is approximately ......... $N$ $(\alpha = 10^{-5}/\,^oC,\,\,Y = 2 \times 10^{11}\,N/m^2)$

An aluminium sphere of $20 \;cm$ diameter is heated from $0^{\circ} C$ to $100^{\circ} C$. Its volume changes by (given that coefficient of linear expansion for aluminium $\alpha_{A l}=23 \times 10^{-6}\;/{^o}C$

- [AIEEE 2011]