The capacitance of a parallel plate capacitor with air as medium is $6\, \mu F$. With the introduction of a dielectric medium, the capacitance becomes $30\, \mu F$. The permittivity of the medium is..........$C ^{2} N ^{-1} m ^{-2}$
$\left(\varepsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1} m ^{-2}\right)$
$5.00$
$0.44 \times 10^{-13}$
$1.77 \times 10^{-12}$
$0.44 \times 10^{-10}$
A capacitor has capacitance $5 \mu F$ when it's parallel plates are separated by air medium of thickness $d$. A slab of material of dielectric constant $1.5$ having area equal to that of plates but thickness $\frac{ d }{2}$ is inserted between the plates. Capacitance of the capacitor in the presence of slab will be $..........\mu F$
If a slab of insulating material $4 \times {10^{ - 3}}\,m$ thick is introduced between the plates of a parallel plate capacitor, the separation between plates has to be increased by $3.5 \times {10^{ - 3}}\,m$ to restore the capacity to original value. The dielectric constant of the material will be
The capacity and the energy stored in a parallel plate condenser with air between its plates are respectively ${C_o}$ and ${W_o}$. If the air is replaced by glass (dielectric constant $= 5$ ) between the plates, the capacity of the plates and the energy stored in it will respectively be
A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage $(U )$ as $\varepsilon = \alpha U$ where $\alpha = 2{V^{ - 1}}$. A similar capacitor with no dielectric is charged to ${U_0} = 78\,V$. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.
An air filled parallel plate capacitor has capacity $C$. If distance between plates is doubled and it is immersed in a liquid then capacity becomes twice. Dielectric constant of the liquid is