The area of the region $\left\{(x, y): x y \leq 8,1 \leq y \leq x^2\right\}$ is
$8 \log _e 2-\frac{14}{3}$
$16 \log _e 2-\frac{14}{3}$
$16 \log _e 2-6$
$8 \log _e 2-\frac{7}{3}$
Find the area of the region in the first quadrant enclosed by the $x-$ axis, the line $y=x,$ and the circle $x^{2}+y^{2}=32$
Area bounded by curves $x =\sqrt {y -1}$ and $y = x + 1$ is-
The value of $\int\limits_0^2 {\frac{{dx}}{{{{(1 - x)}^2}}}} $ is
The area (in $sq. units$) of the region $A = \left\{ {\left( {x,y} \right):\frac{{{y^2}}}{2} \le x \le y + 4} \right\}$ is
Let the area of the region enclosed by the curve $\mathrm{y}=\min \{\sin \mathrm{x}, \cos \mathrm{x}\}$ and the $\mathrm{x}$-axis between $\mathrm{x}=-\pi$ to $\mathrm{x}=\pi$ be $\mathrm{A}$. Then $\mathrm{A}^2$ is equal to...........