The $pH$ of $0.1$ $M$ solution of cyanic acid $(HCNO)$ is $2.34$. Calculate the ionization constant of the acid and its degree of ionization in the solution.
$c=0.1 \,M$
$pH =2.34$
$-\log \left[ H ^{+}\right]= pH$
$-\log \left[ H ^{+}\right]=2.34$
$\left[ H ^{+}\right]=4.5 \times 10^{-3}$
Also.
$\left[ H ^{+}\right]=c \alpha$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=45 \times 10^{-3}=.045$
Then
$K_{a}=c \alpha^{2}$
$=0.1 \times\left(45 \times 10^{-3}\right)^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
The concentration of $[{H^ + }]$ and concentration of $[O{H^ - }]$ of a $ 0.1$ aqueous solution of $2\%$ ionised weak acid is [Ionic product of water $ = 1 \times {10^{ - 14}}]$
The $pH$ of $0.005 \,M$ codeine $\left( C _{18} H _{21} NO _{3}\right)$ solution is $9.95 .$ Calculate its ionization constant and $p K_{ b }$
The $pH$ of $0.004 \,M$ hydrazine solution is $9.7 .$ Calculate its ionization constant $K_{ b }$ and $pK _{ b }$
Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)
Dimethyl amine ${\left( {C{H_3}} \right)_2}NH$ is weak base and its ionization constant $ 5.4 \times {10^{ - 5}}$. Calculate $\left[ {O{H^ - }} \right],\left[ {{H_3}O} \right]$, $pOH$ and $pH$ of its $0.2$ $M$ solution at equilibrium.