Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$  where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is

  • A

    $\pi /3$

  • B

    $\pi /6$

  • C

    $\pi /8$

  • D

    $\pi /4$

Similar Questions

Let $E_1$ and $E_2$ be two ellipses whose centers are at the origin. The major axes of $E_1$ and $E_2$ lie along the $x$-axis and the $y$-axis, respectively. Let $S$ be the circle $x^2+(y-1)^2=2$. The straight line $x+y=3$ touches the curves $S, E_1$ ad $E_2$ at $P, Q$ and $R$, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$. If $e_1$ and $e_2$ are the eccentricities of $E_1$ and $E_2$, respectively, then the correct expression$(s)$ is(are)

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]

Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.

$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are

$(A)$ $(3,0)$ and $(0,2)$

$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$

$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is

$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$

$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$

$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is

$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$

$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$

$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$

$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$

 Give the answer question $1,2$ and $3.$

  • [IIT 2010]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

If lines $3x + 2y = 10$ and $-3x + 2y = 10$ are tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is 

The sum of the focal distances of any point on the conic $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$ is