Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1$ at $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ where $\theta \in (0,\;\pi /2)$. Then the value of $\theta $ such that sum of intercepts on axes made by this tangent is minimum, is
$\pi /3$
$\pi /6$
$\pi /8$
$\pi /4$
If the variable line $y = kx + 2h$ is tangent to an ellipse $2x^2 + 3y^2 = 6$ , the locus of $P (h, k)$ is a conic $C$ whose eccentricity equals
A chord $PQ$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ subtends right angle at its centre. The locus of the point of intersection of tangents drawn at $P$ and $Q$ is-
Let $P$ be an arbitrary point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ $a > b > 0$. Suppose $F_1$ and $F_2$ are the foci of the ellipse. The locus of the centroid of the $\Delta P F_1 F_2$ as $P$ moves on the ellipse is
The distance between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the ellipse is
Consider the ellipse
$\frac{x^2}{4}+\frac{y^2}{3}=1$
Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.
$List-I$ | $List-II$ |
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is | ($P$) $\frac{(\sqrt{3}-1)^4}{8}$ |
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is | ($Q$) $1$ |
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is | ($R$) $\frac{3}{4}$ |
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is | ($S$) $\frac{1}{2 \sqrt{3}}$ |
($T$) $\frac{3 \sqrt{3}}{2}$ |
The correct option is: