Suppose that $A, B, C$ are events such that $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ then $P\,(A + B) = $

  • A

    $0.125$

  • B

    $0.25$

  • C

    $0.375$

  • D

    $0.5$

Similar Questions

Let $A$,$B$ and $C$ be three events such that $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ and $P\left( {\bar A \cap B \cap C} \right) = 0.1$, then the value of $P$(atleast two among $A$,$B$ and $C$ ) equals

Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $P(B)=p .$ Find $p$ if they are independent.

One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is

If $A$ and $B$ are any two events, then $P(A \cup B) = $

If $A$ and $B$ are two events such that $P(A) = 0.4$ , $P\,(A + B) = 0.7$ and $P\,(AB) = 0.2,$ then $P\,(B) = $