Suppose a uniformly charged wall provides a uniform electric field of $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ normally. A charged particle of mass $2 \mathrm{~g}$ being suspended through a silk thread of length $20 \mathrm{~cm}$ and remain stayed at a distance of $10 \mathrm{~cm}$ from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{\mathrm{x}}} \ \mu \mathrm{C}$ where $\mathrm{x}=$ ____________.  use $g=10 \mathrm{~m} / \mathrm{s}^2$ ]

  • [JEE MAIN 2024]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $5$

Similar Questions

Charges $q$, $2q$, $3q$ and $4q$ are placed at the corners $A$,$ B$,$ C$ and $D$ of a square as shown in the following figure. The direction of electric field at the centre of the square is along

A uniformly charged rod of length $4\,m$ and linear charge density $\lambda  = 30\,\mu C/m$ is placed as shown in figure. Calculate the $x-$ component of electric field at point $P$.

The electric field intensity just sufficient to balance the earth's gravitational attraction on an electron will be: (given mass and charge of an electron respectively are $9.1 \times 10^{-31}\,kg$ and $1.6 \times$ $10^{-19}\,C$.)

What is the magnitude of a point charge which produces an electric field of $2\, N/coulomb$ at a distance of $60\, cm$ $(1/4\pi {\varepsilon _0} = 9 \times {10^9}\,N - {m^2}/{C^2})$

In the given figure distance of the point from $A$ where the electric field is zero is......$cm$