વિધાન $1$: $\sim (p \leftrightarrow \sim q)$એ $p\leftrightarrow q $ને તુલ્ય છે.
વિધાન $2$: $\sim (p \leftrightarrow \sim q)$ ટોટોલોજી છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.
વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.
જો $\mathrm{A}, \mathrm{B}, \mathrm{C}$ અને $\mathrm{D}$ એ ચાર અરિક્ત ગણ છે . તો વિધાન" જો $\mathrm{A} \subseteq \mathrm{B}$ અને $\mathrm{B} \subseteq \mathrm{D},$ તો $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ નું સમાનર્થી પ્રેરણ મેળવો.
આપેલ પૈકી નિત્ય સત્ય વિધાન મેળવો.
બુલિયન સમીકરણ $p \vee(\sim p \wedge q )$ નું નિષેધ .......... ને સમતુલ્ય થાય
વિધાન $ \sim \left( {p \leftrightarrow \sim q} \right)$
વિધાન $p \rightarrow (q \wedge r)$ નું નિષેધ = …….