બે સદિશોના સદિશ ગુણાકારના ગુણધર્મો લખો અને સમજાવો.
જો $\left| {\vec A } \right|\, = \,2$ અને $\left| {\vec B } \right|\, = \,4$ હોય, તો કોલમ $-II$ માં આપેલા ખૂણાને અનુરૂપ કોલમ $-I$ માં આપેલા યોગ્ય સંબંધ સાથે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |
બે સમાંતર કે પ્રતિસમાંતર સદિશોનો સદિશ ગુણાકાર કેટલો મળે ?
$\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, અને $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$ આપેલ છે. $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ નું મૂલ્ય કેટલું થાય?