Show that for a projectile the angle between the velocity and the $x$ -axis as a function of time is given by
$\theta(t)=\tan ^{-1}\left(\frac{v_{0 y}-g t}{v_{0 x}}\right)$
Show that the projection angle $\theta_{0}$ for a projectile launched from the origin is given by
$\theta_{0}=\tan ^{-1}\left(\frac{4 h_{m}}{R}\right)$
Where the symbols have their usual meaning.
Let $v_{0 x }$ and $v_{0y }$ respectively be the initial components of the velocity of the projectile along horizontal $(x)$ and vertical $(y)$ directions.
Let $v_{x}$ and $v_{y}$ respectively be the horizontal and vertical components of velocity at a point $P$
Time taken by the projectile to reach point $P =t$ Applying the first equation of motion along the vertical and horizontal directions, we get $v_{y}=v_{0 y}= g t$
And $v_{x}=v_{0 x}$
$\therefore \tan \theta=\frac{v_{y}}{v_{x}}=\frac{v_{0 y}- g t}{v_{0 x}}$
$\theta=\tan ^{-1}\left(\frac{v_{0 y}-g t}{v_{0 x}}\right)$
Maximum vertical height, $h_{ m }=\frac{u_{0}^{2} \sin ^{2} 2 \theta}{2 g }$
Horizontal range, $\quad R=\frac{u_{0}^{2} \sin ^{2} 2 \theta}{g}$
Solving equations $(i)$ and $(ii)$, we get:
$-\frac{h_{ m }}{R}=\frac{\sin ^{2} \theta}{2 \sin ^{2} \theta}$
$=\frac{\sin \theta \times \sin \theta}{2 \times 2 \sin \theta \cos \theta}$
$=\frac{1}{4} \frac{\sin \theta}{\cos \theta}=\frac{1}{4} \tan \theta$
$\tan \theta=\left(\frac{4 h_{ m }}{R}\right)$
$\theta=\tan ^{-1}\left(\frac{4 h_{ m }}{R}\right)$
A ball is projected from a point $O$ as shown in figure. It will strike the ground after ........ $s$ $\left(g=10 \,m / s ^2\right)$
A projectile crosses two walls of equal height $H$ symmetrically as shown The angle of projection of the projectile is
The equation of motion of a projectile are given by $ x = 36 t\,metre$ and $2y = 96 t -9.8 t^2\, metre$. The angle of projection is
An object is projected in the air with initial velocity $u$ at an angle $\theta$. The projectile motion is such that the horizontal range $R$, is maximum. Another object is projected in the air with a horizontal range half of the range of first object. The initial velocity remains same in both the case. The value of the angle of projection, at which the second object is projected, will be $.......$ degree.
A cricketer can throw a ball to a maximum horizontal distance of $100\; m$. How much high above (in $m$) the ground can the cricketer throw the same ball ?