Prove that $(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a).$
$(a+b+c)^{3}=[(a+b)+c]^{3}=(a+b)^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3}$
$\Rightarrow (a+b+c)^{3}=\left(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right)+3\left(a^{2}+2 a b+b^{2}\right) c+3(a+b) c^{2}+c^{3}$
$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a^{2} c+3 a b^{2}+3 b^{2} c+3 a c^{2}+3 b c^{2}+6 a b c$
$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a^{2} c+3 a b^{2}+3 b^{2} c+3 a c^{2}+3 b c^{2}+$
$3 abc +3 abc$
$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a\left(a b+a c+b^{2}+b c\right)+3 c\left(a b+a c+b^{2}+b c\right)$
$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+c)\left(a b+a c+b^{2}+b c\right)$
$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+c)[a(b+c)+b(b+c)]$
$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+c)(b+c)(a+b)$
$\Rightarrow (a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+c)(b+c)(a+b)$
Hence,proved.
Factorise
$x^{3}+8 x^{2}+9 x-18$
Without actually calculating the cubes, find the value of each of the following
$(21)^{3}+(15)^{3}+(-36)^{3}$
Factorise $: 4 x^{2}+4 x y-3 y^{2}$
Verify whether the following are True or False:
$-3$ is a zero of $y^{2}+y-6.$
Factorise each of the following
$8 x^{3}+27 y^{3}+36 x^{2} y+54 x y^{2}$