Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2s$ will be ............. $\mathrm{m}/ \mathrm{s}$
$1$
$4$
$2$
$2\sqrt 2$
The diagram to the right shows the velocity-time graph for two masses $R$ and $S$ that collided elastically. Which of the following statements is true?
$(I)$ $R$ and $S$ moved in the same direction after the collision.
$(II)$ Kinetic energy of the system $(R$ & $S)$ is minimum at $t = 2$ milli sec.
$(III)$ The mass of $R$ was greater than mass of $S.$
A particle of mass $m$ moving with velocity $V_0$ strikes a simple pendulum of mass $m$ and sticks to it. The maximum height attained by the pendulum will be
A bullet of mass $m$ moving with velocity $v$ strikes a suspended wooden block of mass $M$. If the block rises to a height $h$, the initial velocity of the bullet will be
A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
A ball of mass $m$ is dropped from a heigh $h$ on a platform fixed at the top of a vertical spring, as shown in figure. The platform is depressed by a distance $x.$ Then the spring constant is