હોસ્પિટલમાં $89\, \%$ દર્દીને હદયની બીમારી છે અને $98\, \%$ એ ફેફસાની બીમારી છે. જો $\mathrm{K}\, \%$ દર્દીને જો બંને પ્રકારની બીમારી હોય તો $\mathrm{K}$ ની કિમંત આપલે પૈકી ક્યાં ગણમાં શક્ય નથી.
$\{79,81,83,85\}$
$\{84,86,88,90\}$
$\{80,83,86,89\}$
$\{84,87,90,93\}$
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C_{1}$ અથવા રસાયણ $C _{2}$ ની અસર માલૂમ પડી હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
એક સર્વે અનુસાર એક શહેરમાં $63 \%$ લોકો સમાચારપત્ર $A$ વાંચે જ્યારે $76 \%$ લોકો સમાચારપત્ર $B$ વાંચે છે જો $x \%$ લોકો બંને સમાચારપત્ર વાંચે તો $x$ ની કિમત ........... હોઈ શકે
સમતલના તમામ ત્રિકોણના ગણને $\mathrm{U}$ તરીકે લો. જો ઓછામાં ઓછો એક ખૂણો $60^{\circ},$ થી ભિન્ન હોય તેવા ત્રિકોણનો ગણ $\mathrm{A}$ હોય, તો $\mathrm{A} ^{\prime}$ શું થશે ?
$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો - ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.
એક શહેરમાં $20\%$ લોકો કારમાં મુસાફરી કરે છે , $50\%$ લોકો બસમાં મુસાફરી કરે છે અને $10\%$ લોકો બસ અને કારમાં મુસાફરી કરે છે તો . . . . $\%$ લોકો કાર અથવા બસમાં મુસાફરી કરે છે.