One vertex of the equilateral triangle with centroid at the origin and one side as $x + y - 2 = 0$ is
$( - 1, - 1)$
$(2,2)$
$( - 2, - 2)$
None of these
If the locus of the point, whose distances from the point $(2,1)$ and $(1,3)$ are in the ratio $5: 4$, is $a x^2+b y^2+c x y+d x+e y+170=0$, then the value of $\mathrm{a}^2+2 \mathrm{~b}+3 \mathrm{c}+4 \mathrm{~d}+\mathrm{e}$ is equal to:
Two sides of a rhombus are along the lines, $x -y+ 1 = 0$ and $7x-y-5 =0.$ If its diagonals intersect at $(-1,-2),$ then which one of the following is a vertex of this rhombus?
The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. $A$ new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
The sides $AB,BC,CD$ and $DA$ of a quadrilateral are $x + 2y = 3,\,x = 1,$ $x - 3y = 4,\,$ $\,5x + y + 12 = 0$ respectively. The angle between diagonals $AC$ and $BD$ is ......$^o$
The area of the triangle bounded by the straight line $ax + by + c = 0,\,\,\,\,(a,b,c \ne 0)$ and the coordinate axes is