One of the two identical conducing wires of length $L$ is bent in the form of a circular loop and the other one into a circular coil of $N$ identical turns. If the same current is passed in both, the ratio of the magnetic field at the central of the loop $(B_L)$ to that at the centre of the coil $(B_C),$; $.\,\frac {B_L}{B_C}$ will be
$N$
$\frac {1}{N}$
$N^2$
$\frac {1}{N^2}$
Two concentric coils each of radius equal to $2\pi \,{\rm{ }}cm$ are placed at right angles to each other. $3$ $ampere$ and $4$ $ampere$ are the currents flowing in each coil respectively. The magnetic induction in $Weber/{m^2}$ at the centre of the coils will be $({\mu _0} = 4\pi \times {10^{ - 7}}\,Wb/A.m)$
A cylindrical cavity of diameter a exists inside a cylinder of diameter $2$a shown in the figure. Both the cylinder and the cavity are infinitely long. A uniform current density $J$ flows along the length. If the magnitude of the magnetic field at the point $P$ is given by $\frac{N}{12} \mu_0$ aJ, then the value of $N$ is :
One Tesla is equal to
The current of $1\,A$ is passed through a hexagonal conducting wire of side $1\,m$ . The magnetic induction at its centre $O$ in $Wb/m^2$ will be