On dividing $p(x)=x^{3}+2 x^{2}-5 a x-7$ by $(x+1),$ the remainder is $R _{1}$ and on dividing $q(x)=x^{3}+a x^{2}-12 x+6$ by $(x-2), \quad$ the remainder is $R _{2} .$ If $2 R _{1}+ R _{2}=6,$ then find the value of $a$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a=2$

Similar Questions

Evaluate the following products without multiplying directly

$103 \times 105$

Expand

$(2 a+3 b)(2 a-5 b)$

Expand

$(x+5 y)(x-5 y)$

Expand

$\left(x-\frac{1}{2}\right)^{2}$

Factorise the following quadratic polynomials by splitting the middle term

$x^{2}+10 x+16$