Obtain the equation of electric field at a point by system of $\mathrm{'n'}$ point charges.
As shown in figure, $q_{1}, q_{2}, \ldots, q_{n}$ charges are at $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n}$ from origin $\mathrm{O}$.
Electric field at $P$ of position vector $\overrightarrow{r_{\mathrm{IP}}}$,
$\overrightarrow{\mathrm{E}}_{1}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1}}{r_{1 \mathrm{P}}^{2}} \hat{r}_{\mathrm{IP}}$
where $\hat{r}_{\mathrm{IP}}$ is unit vector in direction from $q_{1}$ to $\mathrm{P}$.
Electric field at $\mathrm{P}$ of position vector $\overrightarrow{r_{2 P}}$,
$\mathrm{E}_{2}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{2}}{r_{2 \mathrm{P}}^{2}} \hat{r}_{2 \mathrm{P}}$
Similarly electric fields by $q_{3}, q_{4}, \ldots, q_{n}$ at $\mathrm{P}$ are $\overrightarrow{\mathrm{E}}_{3}, \overrightarrow{\mathrm{E}_{4}}, \ldots, \overrightarrow{\mathrm{E}_{n}}$ can be obtained and resultant field $\overrightarrow{\mathrm{E}}$ can be obtained.
$\overrightarrow{\mathrm{E}}(\vec{r}) &=\overrightarrow{\mathrm{E}}_{1}(\vec{r})+\overrightarrow{\mathrm{E}}_{2}(\vec{r})+\ldots+\overrightarrow{\mathrm{E}}_{n}(\vec{r})$
$=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1}}{r_{1 \mathrm{P}}^{2}} \hat{r}_{1 \mathrm{P}}+\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{2}}{r_{2 \mathrm{P}}^{2}} \hat{r}_{2 \mathrm{P}}+\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{n}}{r_{n \mathrm{P}}^{2}} \hat{r}_{n \mathrm{P}}$
$\overrightarrow{\mathrm{E}}(\vec{r}) &=\frac{1}{4 \pi \epsilon_{0}} \sum^{n} \frac{q_{i}}{r_{i \mathrm{P}}^{2}} \hat{r}_{i \mathrm{P}} \text { where } i=1,2, \ldots, n$
$\overrightarrow{\mathrm{E}}$ is vector quantity and it varies by point to point in space and it is decided by positions of source charges.
A drop of ${10^{ - 6}}\,kg$ water carries ${10^{ - 6}}\,C$ charge. What electric field should be applied to balance its weight (assume $g = 10\,m/{s^2}$)
The number of electrons to be put on a spherical conductor of radius $0.1\,m$ to produce an electric field of $0.036\, N/C$ just above its surface is
The electric field intensity just sufficient to balance the earth's gravitational attraction on an electron will be: (given mass and charge of an electron respectively are $9.1 \times 10^{-31}\,kg$ and $1.6 \times$ $10^{-19}\,C$.)
A charged cork of mass $m$ suspended by a light string is placed in uniform electric filed of strength $E= $$(\hat i + \hat j)$ $\times$ $10^5$ $NC^{-1}$ as shown in the fig. If in equilibrium position tension in the string is $\frac{{2mg}}{{(1 + \sqrt 3 )}}$ then angle $‘\alpha ’ $ with the vertical is
For the given figure the direction of electric field at $A$ will be