Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in R$, is (where $\{.\}$ denotes fractional part function)
$1$
$0$
$2$
infinite
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are
Consider a three-digit number with the following properties:
$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;
$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$
Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number
The equation $\sqrt {3 {x^2} + x + 5} = x - 3$ , where $x$ is real, has