Negation of statement "If I will go to college, then I will be an engineer" is -
I will not go to college and I will be an engineer
I will go to college and I will not be an engineer.
Either I will not go to college or I will not be an engineer.
Neither I will go to college nor I will be an engineer.
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
Consider the following statements:
$P :$ Ramu is intelligent
$Q $: Ramu is rich
$R:$ Ramu is not honest
The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.
If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$
Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :