A car manufacturer advertises that the brakes are so perfect that the car stops instantaneously. Comment.
The following table show os the positon of three persons between $8.00\, am$ to $8.20\, am$.
Time | Position (in $km$) | ||
Person $A$ | Person $B$ | Person $C$ | |
$8.00 \,am$ | $0$ | $0$ | $0$ |
$8.05 \,am$ | $4$ | $5$ | $10$ |
$8.10\, am$ | $13$ | $10$ | $19$ |
$8.15 \,am$ | $20$ | $15$ | $24$ |
$8.20\, am$ | $25$ | $20$ | $27$ |
$(i)$ Who is moving with constant speed ?
$(ii)$ Who has travelled maximum distance between $8.00\, am$ to $8.05\, am$ ?
$(iii)$ Calculate the average speed of person $'A^{\prime}$ in $k m h^{-1}$
A car is moving on a straight road with uniform acceleration. The following table gives the speed of the car at various instants of time.
Time $(s)$ | $0$ | $10$ | $20$ | $30$ | $40$ | $50$ |
Speed $\left(m s^{-1}\right)$ | $5$ | $10$ | $15$ | $20$ | $25$ | $30$ |
$(i)$ Draw the speed$-$time graph representing the above set of observations.
$(ii)$ Find the acceleration of the car.
Can a body have constant speed and still be accelerating ?
A body moves with a velocity of $2\, m s ^{-1}$ for $5\, s$, then its velocity increases uniformly to $10\, m s ^{-1}$ in next $5\, s.$ Thereafter, its velocity begins to decrease at a uniform rate until it comes to rest after $5\, s$.
$(i)$ Plot a velocity-time graph for the motion of the body.
$(ii)$ From the graph, find the total distance covered by the body after $2\, s$ and $12\, s$.