Mark the correct statement :-
$| \vec a + \vec b | \geq | \vec a | + | \vec b |$
$| \vec a + \vec b | \leq | \vec a | + | \vec b |$
$| \vec a - \vec b | \geq | \vec a | + | \vec b |$
All of the above
Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?
When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be
When vector $\overrightarrow{ A }=2 \hat{ i }+3 \hat{ j }+2 \hat{ k }$ is subtracted from vector $\vec{B}$, it gives a vector equal to $2 \hat{j}$. Then the magnitude of vector $\vec{B}$ will be:
The vector $\overrightarrow{O A}$ where $O$ is origin is given by $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}$. Now it is rotated by $45^{\circ}$ anticlockwise about $O$. What will be the new vector?