माना रैखिक समीकरण निकाय  $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ के अनंत हल है, तो निकाय  $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$ 

  • [JEE MAIN 2023]
  • A

    के अनंत हल है।

  • B

     का एक हल है जो $x-y=1$ को संतुष्ट करता है।

  • C

    का कोई हल नही है।

  • D

    केवल एक हल है जो $\mathrm{x}+\mathrm{y}=1$ को संतुष्ट करता है।

Similar Questions

माना समीकरण निकाय

$x+y+\alpha z=2$

$3 x+y+z=4$

$x+2 z=1$

का अद्वितीय हल $\left( x ^*, y ^*, z ^*\right)$ है यदि $\left(\alpha, x ^*\right)$, $\left( y ^*, \alpha\right)$ तथा $\left( x ^*,- y ^*\right)$ संरेखीय बिन्दु हो, तो $\alpha$ की सभी संभव मानों का निरपेक्ष मान होगा :

  • [JEE MAIN 2022]

माना रैखिक समीकरण $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ असंगत है तो $\alpha$ बराबर होगा।

  • [JEE MAIN 2022]

निकाय $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ के अनन्त हलों के लिये  $ k$  के मानों की संख्या होगी

  • [IIT 2002]

यदि $f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|$ है, तथा $A$ तथा $B$ क्रमशः $f(\theta)$ के अधिकतम तथा न्यूनतम मान हैं, तो $( A , B )$ बराबर है 

  • [JEE MAIN 2014]

माना $P$ तथा $Q, 3 \times 3$ आव्यूह हैं तथा $P \neq Q$ है। यदि $P^{3}=Q^{3}$ तथा $P^{2} Q=Q^{2} P$ है, तो सारणिक $\left(P^{2}+Q^{2}\right)$ बराबर है

  • [AIEEE 2012]