Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. Therefore,

$S_{1}=\frac{n}{2}[2 a+(n-1) d]$         .........$(1)$

$S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]=n[2 a+(2 n-1) d]$         .......$(2)$

$S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$          ..........$(3)$

From $(1)$ and $(2),$ we obtain

$S_{2}-S_{1}=n[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]$

$=n\left\{\frac{4 a+4 n d-2 d-2 a-n d+d}{2}\right\}$

$=n\left[\frac{2 a+3 n d-d}{2}\right]$

$=\frac{n}{2}[2 a+(3 n-1) d]$

$\therefore 3\left(S_{2}-S_{1}\right)=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$         [ From $(3)$ ]

Hence, the given result is proved.

Similar Questions

The sum of $1 + 3 + 5 + 7 + .........$ upto $n$ terms is

Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is

  • [JEE MAIN 2020]

The sides of a right angled triangle are in arithmetic progression. If the triangle has area $24$ , then what is the length of its smallest side ?

  • [IIT 2017]

Let the digits $a, b, c$ be in $A.P.$ Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in $A.P.$ at least once. How many such numbers can be formed?

  • [JEE MAIN 2023]

If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is