Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0,$ be in the ratio $12: 8: 3 .$ Then the term independent of $x$ in the expansion, is equal to ...... .
$5$
$3$
$4$
$6$
In the expansion of ${\left( {\frac{a}{x} + bx} \right)^{12}}$,the coefficient of $x^{-10}$ will be
If $\alpha$ and $\beta$ be the coefficients of $x^{4}$ and $x^{2}$ respectively in the expansion of
$(\mathrm{x}+\sqrt{\mathrm{x}^{2}-1})^{6}+(\mathrm{x}-\sqrt{\mathrm{x}^{2}-1})^{6}$, then
Let $0 \leq \mathrm{r} \leq \mathrm{n}$. If ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}=55: 35: 21$, then $2 n+5 r$ is equal to:
The coefficient of $x^{13}$ in the expansion of $(1 -x)^5(1 + x + x^2 + x^3)^4$ is :-
Number of integral tems in the expansion of $\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824}$ is equal to..................