Let $P$ be a moving point such that sum of its perpendicular distances from $2x + y = 3$ and $x - 2y + 1 = 0$ is always $2\, units$ then area bounded by locus of point $P$ is
$10$
$8$
$6$
$4$
Consider the lines $L_1$ and $L_2$ defined by
$L _1: x \sqrt{2}+ y -1=0$ and $L _2: x \sqrt{2}- y +1=0$
For a fixed constant $\lambda$, let $C$ be the locus of a point $P$ such that the product of the distance of $P$ from $L_1$ and the distance of $P$ from $L_2$ is $\lambda^2$. The line $y=2 x+1$ meets $C$ at two points $R$ and $S$, where the distance between $R$ and $S$ is $\sqrt{270}$.
Let the perpendicular bisector of $RS$ meet $C$ at two distinct points $R ^{\prime}$ and $S ^{\prime}$. Let $D$ be the square of the distance between $R ^{\prime}$ and $S ^{\prime}$.
($1$) The value of $\lambda^2$ is
($2$) The value of $D$ is
Two consecutive sides of a parallelogram are $4x + 5y = 0$ and $7x + 2y = 0$. If the equation to one diagonal is $11x + 7y = 9$, then the equation to the other diagonal is :-
The circumcentre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1 , a^2 + 1 )$ and $(2a, - 2a)$, $a \ne 0$. Then for any $a$ , the orthocentre of this triangle lies on the line
The co-ordinates of the vertices $A$ and $B$ of an isosceles triangle $ABC (AC = BC)$ are $(-2,3)$ and $(2,0)$ respectively. $A$ line parallel to $AB$ and having a $y$ -intercept equal to $\frac{43}{12}$ passes through $C$, then the co-ordinates of $C$ are :-
The line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{2{c^2}}}$, where $a, b, c \in R_0$ and $c$ is constant, then locus of the foot of the perpendicular from the origin on the given line is -