Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements
$(i)$ $p \leftrightarrow q$
$(ii)$ $~ p \leftrightarrow q$
$(iii)$ $~ q \leftrightarrow p$
$(iv)$ $~ p \leftrightarrow ~ q$
$T T T T$
$F T T T$
$F T T T$
$F T T F$
Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.
$\sim (p \vee (\sim q))$ is equal to .......
Consider the following statements:
$P :$ Ramu is intelligent
$Q $: Ramu is rich
$R:$ Ramu is not honest
The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.
The contrapositive of the statement "if I am not feeling well, then I will go to the doctor" is