Let $f (x)$ and $g (x)$ be two continuous functions defined from $R \rightarrow R$, such that $f (x_1) > f (x_2)$ and $g (x_1) < g (x_2), \forall x_1 > x_2$ , then solution set of $f\,\left( {\,g({\alpha ^2} - 2\alpha )\,} \right) >f\,\left( {\,g(3\alpha - 4)\,} \right)$ is

  • A

    $R$

  • B

    $\phi$

  • C

    $(1, 4)$

  • D

    $R - [1, 4]$

Similar Questions

Given $f (x) =4\,\, - \,\,{\left( {\frac{1}{2}\, - \,x} \right)^{2/3}}\,$ $g (x) = \left\{ \begin{array}{l}\frac{{\tan \,\,[x]}}{x}\,\,\,\,,\,\,x \ne \,0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,x\, = \,0\end{array} \right.$

$h (x) = \{x\}$   $k (x) = {5^{{{\log }_2}(x\, + \,3)}}$then in $[0, 1]$ Lagranges Mean Value Theorem is $NOT$ applicable to

If from mean value theorem, $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, then

Examine the applicability of Mean Value Theorem:

$(i)$ $f(x)=[x]$ for $x \in[5,9]$

$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$

$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$

For a polynomial $g ( x )$ with real coefficient, let $m _{ g }$ denote the number of distinct real roots of $g ( x )$. Suppose $S$ is the set of polynomials with real coefficient defined by

$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\} \text {. }$

For a polynomial $f$, let $f^{\prime}$ and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of $\left(m_f+m_{f^{\prime}}\right)$, where $f \in S$, is. . . . . . . .

  • [IIT 2020]

If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to

  • [JEE MAIN 2021]