જો ${a_1},{a_2},{a_3}, \ldots $ એ સંમાતર શ્રેણીના પદ છે.જો $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ તો $\frac{{{a_6}}}{{{a_{21}}}}$ = ______.
$\frac{{41}}{{11}}$
$\frac{7}{2}$
$\frac{2}{7}$
$\frac{{11}}{{41}}$
જો $a_n$ એ શ્રેઢી છે કે જેથી $a_1 = 5$ અને $a_{n+1} = a_n + (n -2)$ બધા $n \in N$ માટે , હોય તો $a_{51}$ ની કિમત મેળવો
જો કોઈ વાસ્તવિક $x$ માટે $1, \log _{10}\left(4^{x}-2\right)$ અને $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ એ સમાંતર શ્રેણીમાં હોય તો $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ ની કિમંત મેળવો.
વધતી સમાંતર શ્રેણીમાં ચાર ક્રમિક પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો સરવાળો કેટલો થાય ?
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{17}},{a_{24}}$ પદ શોધો : $a_{n}=4 n-3$
ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે