Let $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k =1,2, \ldots 9$.

List $I$ List $II$
$P.$ For each $z_k$ there exists a $z_j$ such that $z_k \cdot z_j=1$ $1.$ True
$Q.$ There exists a $k \in\{1,2, \ldots ., 9\}$ such that $z_{1 .} . z=z_k$ has no solution $z$ in the set of complex numbers. $2.$ False
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . .\left|1-z_9\right|}{10}$ equals $3.$ $1$
$S.$ $1-\sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ equals $4.$ $2$

Codes: $ \quad P \quad Q \quad R \quad S$

  • [IIT 2014]
  • A

    $\quad 1 \quad 2 \quad 4 \quad 3 $

  • B

    $\quad 2 \quad 1 \quad 3 \quad 4 $

  • C

    $\quad 1 \quad 2 \quad 3 \quad 4 $

  • D

    $\quad 2 \quad 1 \quad 4 \quad 3 $

Similar Questions

The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$

Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to

  • [IIT 1995]

The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is

For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if

If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.

  • [JEE MAIN 2022]