Let $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k =1,2, \ldots 9$.
List $I$ | List $II$ |
$P.$ For each $z_k$ there exists a $z_j$ such that $z_k \cdot z_j=1$ | $1.$ True |
$Q.$ There exists a $k \in\{1,2, \ldots ., 9\}$ such that $z_{1 .} . z=z_k$ has no solution $z$ in the set of complex numbers. | $2.$ False |
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . .\left|1-z_9\right|}{10}$ equals | $3.$ $1$ |
$S.$ $1-\sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ equals | $4.$ $2$ |
Codes: $ \quad P \quad Q \quad R \quad S$
$\quad 1 \quad 2 \quad 4 \quad 3 $
$\quad 2 \quad 1 \quad 3 \quad 4 $
$\quad 1 \quad 2 \quad 3 \quad 4 $
$\quad 2 \quad 1 \quad 4 \quad 3 $
The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if
If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.