Let $F_1\left(x_1, 0\right)$ and $F_2\left(x_2, 0\right)$, for $x_1<0$ and $x_2>0$, be the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{8}=1$. Suppose a parabola having vertex at the origin and focus at $F_2$ intersects the ellipse at point $M$ in the first quadrant and at point $N$ in the fourth quadrant.
($1$)The orthocentre of the triangle $F_1 M N$ is
($A$) $\left(-\frac{9}{10}, 0\right)$ ($B$) $\left(\frac{2}{3}, 0\right)$ ($C$) $\left(\frac{9}{10}, 0\right)$ ($D$) $\left(\frac{2}{3}, \sqrt{6}\right)$
($2$) If the tangents to the ellipse at $M$ and $N$ meet at $R$ and the normal to the parabola at $M$ meets the $x$-axis at $Q$, then the ratio of area of the triangle $M Q R$ to area of the quadrilateral $M F_{\mathrm{I}} N F_2$ is
($A$) $3: 4$ ($B$) $4: 5$ ($C$) $5: 8$ ($D$) $2: 3$
Givan the answer qestion ($1$) and ($2$)
$A,B$
$A,D$
$A,C$
$A,B,D$
Find the equation for the ellipse that satisfies the given conditions: Centre at $(0,\,0),$ major axis on the $y-$ axis and passes through the points $(3,\,2)$ and $(1,\,6)$
Find the equation for the ellipse that satisfies the given conditions : Vertices $(\pm 5,\,0),$ foci $(\pm 4,\,0)$
What is the equation of the ellipse with foci $( \pm 2,\;0)$ and eccentricity $ = \frac{1}{2}$
If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to
Let the ellipse $E : x ^2+9 y ^2=9$ intersect the positive $x$ - and $y$-axes at the points $A$ and $B$ respectively Let the major axis of $E$ be a diameter of the circle $C$. Let the line passing through $A$ and $B$ meet the circle $C$ at the point $P$. If the area of the triangle which vertices $A, P$ and the origin $O$ is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m - n$ is equal to