જો સંબંધ $R$ એ વાસ્તવિક સંખ્યાગણ $R$ પર $aRb=\{|a - b| \le 1\}$ દ્વારા વ્યાખ્યાયિત હોય તો સંબંધ $R$ એ . . . .
સ્વવાચક અને સંમિત
માત્ર સંમિત
માત્ર પરંપરિત
માત્ર વિસંમિત
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ અને $y$ એક જ વિસ્તારમાં રહે છે. $\}$ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
ગણ $\mathrm{A}=\{1,2,3,4,5,6\}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{y}$ એ $\mathrm{x}$ વડે વિભાજ્ય છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
સાબિત કરો કે $R$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): a \leq b\},$ એ સ્વવાચક અને પરંપરિત છે, પરંતુ સંમિત સંબંધ નથી.
વાસ્તવિક સંખ્યા $x$ અને $y$ માટે જો $ xRy \in $ $x - y + \sqrt 2 $ એ અંસમેય સંખ્યા હોય તો સંબંધ $R$ એ . . . .
જો સંબંધ $R$ એ $A = \{1,2, 3, 4\}$ થી $B = \{1, 3, 5\}$ પર $(a,\,b) \in R \Leftrightarrow a < b,$ દ્વારા વ્યાખ્યાયિત હોય તો $Ro{R^{ - 1}}$=